Position: Index > Unclassified >

Interfacing 16

2018-01-30 05:46  
Declaration:We aim to transmit more information by carrying articles . We will delete it soon, if we are involved in the problems of article content ,copyright or other problems.

LCD display is an inevitable part in almost all embedded projects and this article is about  interfacing 16×2 LCD with 8051 microcontroller. Many guys find it hard to interface LCD module with the 8051 but the fact is that if you learn it properly, its a very easy job and by knowing it you can easily design embedded projects like digital voltmeter / ammeter, digital clock, home automation displays, status indicator display, digital code locks, digital speedometer/ odometer, display for music players etc etc. Thoroughly going through this article will make you able to display any text (including the extended characters) on any part of the 16×2 display screen. In order to understand the interfacing first you have to know about the 16×2 LCD module.

16×2 LCD module.

16×2 LCD module is a very common type of LCD module that is used in 8051 based embedded projects. It consists of 16 rows and 2 columns of 5×7 or 5×8 LCD dot matrices. The module were are talking about here is type number JHD162A which is a very popular one . It is available in a 16 pin package with back light ,contrast adjustment function and each dot matrix has 5×8 dot resolution. The pin numbers, their name and corresponding functions are shown in the table  below.

Pin No:Name Function
1VSSThis pin must be connected to the ground
2VCC Positive supply voltage pin (5V DC)     
3VEEContrast adjustment
4RSRegister selection
5R/WRead or write
6E Enable
7DB0 Data
8DB1 Data
9DB2 Data
10DB3 Data
11DB4 Data
12DB5 Data
13DB6 Data
14DB7 Data
15LED Back light LED
16LED- Back light LED- 

VEE pin is meant for adjusting the contrast of the LCD display and the contrast can be adjusted by varying the voltage at this pin. This is done by connecting one end of a POT to the Vcc (5V), other end to the Ground and connecting the center terminal (wiper) of of the POT to the VEE pin. See the circuit diagram for better understanding.

The JHD162A has two built in registers namely data register and command register.  Data register is for placing the data to be displayed , and the command register is to place the commands. The 16×2 LCD module has a set of commands each meant for doing a particular job with the display. We will discuss in detail about the commands later. High logic at the RS pin will select the data register and  Low logic at the RS pin will select the command register. If we make the RS pin high and the put a data in the 8 bit data line (DB0 to DB7) , the LCD module will recognize it as a data to be displayed .  If we make RS pin low and put a data on the data line, the module will recognize it as a command.

R/W pin is meant for selecting between read and write modes. High level at this pin enables read mode and low level at this pin enables write mode.

E pin is for enabling the module. A high to low transition at this pin will enable the module.

DB0 to DB7 are the data pins. The data to be displayed and the command  instructions are  placed on these pins. 

LED is the anode of the back light LED and this pin must be connected to Vcc through a suitable series current limiting resistor. LED- is the cathode of the back light LED and this pin must be connected to ground.

16×2 LCD module commands.

16×2 LCD module has a set of preset command instructions. Each command will make the module to do a particular task. The commonly used commands and their function are given in  the  table below.

Command                      Function
0FLCD ON, Cursor ON, Cursor blinking ON
01    Clear screen
2Return home
4Decrement cursor
06Increment cursor
EDisplay ON ,Cursor ON
80Force cursor to the beginning of  1stline
C0Force cursor to the beginning of 2ndline
38Use 2 lines and 5×7 matrix
83Cursor line 1 position 3
3CActivate second line
0C3Jump to second line, position3
OC1Jump to second line, position1

LCD initialization.

 The steps that has to be done for initializing the LCD display is given below and these steps are common for almost all applications.

Send 38H to the 8 bit data line for initializationSend 0FH for making LCD ON, cursor ON and cursor blinking ON.Send 06H for incrementing cursor position.Send 01H for clearing the display and return the cursor.

Sending data to the LCD.

The steps for sending data to the LCD module is given below. I have already said that the LCD module has pins namely RS, R/W and E. It is the logic state of these pins that make the module to determine whether a given data input  is a command or data to be displayed.

Make R/W low.Make RS=0 if data byte is a command and make RS=1 if the data byte is a data to be displayed.Place data byte on the data register.Pulse E from high to low.Repeat above steps for sending another data.

Circuit diagram.

interface LCD with 8051

Interfacing 16×2 LCD module to 8051

The circuit diagram given above shows how to interface a 16×2 LCD module with AT89S1 microcontroller. Capacitor C3, resistor R3 and push button switch S1 forms the reset circuitry. Ceramic capacitors C1,C2 and crystal X1 is related to the clock circuitry which produces the system clock frequency. P1.0 to P1.7 pins of the microcontroller is connected to the DB0 to DB7 pins of the module respectively and through this route the data goes to the LCD module.  P3.3, P3.4 and P3.5 are connected to the E, R/W, RS pins of the microcontroller and through this route the control signals are transffered to the LCD module. Resistor R1 limits the current through the back light LED and so do the back light intensity. POT R2 is used for adjusting the contrast of the display.

Program.

 ASM |  copy code |? 
MOVA,#38H//Use2linesand5x7 matrix
ACALL CMND
MOVA,#0FH//LCD ON,cursor ON,cursor blinking ON
ACALL CMND
MOVA,#01H//Clear screen
ACALL CMND
MOVA,#06H//Increment cursor
ACALL CMND
MOVA,#82H//Cursor line one,position2
ACALL CMND
MOVA,#3CH//Activate second line
ACALL   CMND
MOVA,#49D
ACALL DISP
MOVA,#54D
ACALL DISP
MOVA,#88D
ACALL DISP
MOVA,#50D
ACALL DISP
MOVA,#32D
ACALL DISP
MOVA,#76D
ACALL DISP
MOVA,#67D
ACALL DISP
MOVA,#68D
ACALL DISP
 
 
MOVA,#0C1H//Jump to second line,position1
ACALL CMND
 
MOVA,#67D
ACALL DISP
MOVA,#73D
ACALL DISP
MOVA,#82D
ACALL DISP
MOVA,#67D
ACALL DISP
MOVA,#85D
ACALL DISP
MOVA,#73D
ACALL DISP
MOVA,#84D
ACALL DISP
MOVA,#83D
ACALL DISP
MOVA,#84D
ACALL DISP
MOVA,#79D
ACALL DISP
MOVA,#68D
ACALL DISP
MOVA,#65D
ACALL DISP
MOVA,#89D
ACALL DISP
 
 
HERE:SJMP HERE
 
CMND:MOVP1,A
CLR P3.5
CLR P3.4
SETBP3.3
CLR P3.3
ACALL DELY
RET;
 
DISP:MOVP1,A
SETBP3.5
CLR P3.4
SETBP3.3
CLR P3.3
ACALL DELY
RET;
 
DELY:CLR P3.3
CLR P3.5
SETBP3.4
MOVP1,#0FFh
SETBP3.3
MOVA,P1
JBACC.7,DELY
 
CLR P3.3
CLR P3.4
RET;
 
END

Subroutine CMND sets the logic of the RS, R/W, E pins of the LCD module so that the module recognizes the input data ( given to DB0 to DB7) as a command.

Subroutine DISP sets the logic of the RS, R/W, E pins of the module so that the module recognizes the input data as a data to be displayed .


Reprinted Url Of This Article:
http://www.circuitstoday.com/interfacing-16x2-lcd-with-8051